

Paper ## - DIEZ AÑOS DE LA PROLONGACION DE LA ESCOLLERA DEL PUERTO DE QUEQUEN – VALIDANDO HIPOTESIS

Ing. Landa, José M. (LANDA IN TEC S.R.L.); Ing. Amarilla, Roberto (CONSULTORES DICAP S.A.); Ing. Goicoechea, Mario (CONSORCIO DE GESTIÓN PUERTO QUEQUÉN)

Email: ing_landa@yahoo.com.ar

ABSTRACT:

Las obras de remodelación y prolongación de la escollera del Puerto de Quequén, Provincia de Buenos Aires, Argentina, cumplieron diez años desde su finalización y recepción provisoria.

Esta obra tuvo muchas particularidades que la hacen especialmente interesante para ser estudiada en su evolución.

Por un lado, por lo riguroso del clima de olas establecido como condición de diseño, el tamaño de los bloques y elementos de escollera resultaba muy elevado. De hecho fue la obra con bloques Core-Loc más grandes hasta ese momento (11 m³) y fue pionera en la experiencia del uso y estudio del comportamiento de bloques de estas dimensiones.

Por otro lado el rigor climático de la costa atlántica argentina determinó las modalidades constructivas a adoptar, la necesidad de contar con un pronóstico de olas y tormentas con la máxima antelación posible a fin de proteger la obra en forma temporaria para soportar la tormenta o clima de olas ocasional para, posteriormente, retomar el avance de la misma.

Además, el objetivo de la obra era muy ambicioso respecto de la funcionalidad incremental que le aportaría al Puerto Quequén al reducir los días de inoperatividad debidos al cierre del mismo.

La obra incorporó un olígrafo que permite no sólo determinar con precisión el clima de olas existente en el acceso al puerto en cada momento y establecer en función de ello la necesidad de cierre o no del ingreso y egreso de buques sino, principalmente, registrar sistemáticamente las olas y establecer las estadísticas correspondientes.

A su vez, como para este tipo de obras no se fijan programas de mantenimiento sino que el mismo es función del deterioro que se produce en la estructura por la acción a través del tiempo de las olas y la energía de las mismas (principalmente en las tormentas o temporales), se fijaron en la obra original puntos de referencia que fueron monitoreados a lo largo del tiempo.

El presente trabajo realiza una recopilación y análisis de los datos disponibles, buscando la validación de los parámetros de diseño de la obra (ola de diseño y período) y de la mejora de la operatividad del Puerto Quequén (días operativos). Se analizan los datos del Proyecto Ejecutivo, los datos obtenidos por las mediciones del olígrafo, las predicciones de altura de olas, los registros de días operativos del puerto y los relevamientos de seguimiento de la evolución de la estructura así como otras fuentes de datos.

1 INTRODUCCIÓN

La obra Reparación, Remodelación y Prolongación de la Escollera Sur del Puerto de Quequén, según lo definido en su Proyecto Ejecutivo, tenía "... por objeto reconstruir las obras dañadas y alargarlas para aminorar la agitación por olas marinas en el canal de acceso y mejorar las condiciones de navegación de los buques. La concreción de este proyecto redundará en un mayor

aprovechamiento del puerto, ya que se reducirán notoriamente los tiempos de cierre del puerto que hoy se dispone cada vez que las olas superan alturas de 1,80 m en la zona del morro...".

Cabe señalar que esta inoperatividad del puerto alcanzaba en años de condiciones climáticas adversas los 180 días.

Las obras realizadas en la escollera existente abarcaron las siguientes extensiones definidas a partir del inicio en la playa de la escollera existente:

X CONGRESO ARGENTINO DE INGENIERIA PORTUARIA

Buenos Aires, 17-20 Abril 2018

- Reparación: 150 m, entre las progresivas 840,80 y 990,80 m
- Remodelación: 198 m, entre las progresivas 990,80 y 1188,80m
 - Prolongación: 400 m

Para el desarrollo del Proyecto Ejecutivo y las obras consecuentes se adoptaron diversas hipótesis, principalmente referidas al clima de olas a que estaría sometida la estructura durante su vida útil. Estas hipótesis fueron definidas en la Memoria Descriptiva y en las Especificaciones Técnicas de la 'Documentación de Licitación' y constituyeron la base referencial de este proyecto.

De dicha documentación se adoptaron en consecuencia los siguientes datos:

- clima de olas,
- trazado de las obras nuevas,
- geometría de la sección,
- coraza con bloques de hormigón del tipo monocapa,
- cotas de coronamiento (se consideraron como niveles mínimos a alcanzar).

En el desarrollo del Proyecto Ejecutivo se realizaron distintos estudios para ratificar y/o corregir las hipótesis de diseño.

A los fines de los parámetros analizados en el presente trabajo, se realizaron ensayos físicos en 2D y 3D para analizar el comportamiento de la escollera frente a distintas condiciones de oleaje, la ocurrencia de daños en la misma y el sobrepaso de agua. Se analizaron, además, condiciones de agitación en ambas caras de la obra y en distintos puntos del canal de acceso. Para evaluar este último aspecto, fundamental a los fines de la mejora operativa del puerto, se complementaron los análisis anteriores con modelaciones matemáticas.

2 ANÁLISIS REALIZADOS:

2.1 DATOS ORIGINALES

El Proyecto Ejecutivo adoptó como suyas las premisas impuestas en el Pliego Licitatorio.

Así los datos de partida del clima de olas fueron:

Remodelación

Sector de la Escollera	Progresivas respecto del morro actual	Progresivas respecto inicio escollera	Longitud del Sector	Altura de ola de diseño	Condición de diseño
-	m	m	m	m	-
1N	-348 / -148	840,8 / 1040,8	200	-	Olas difractadas
1S	-348 / -198	840,8 / 990,8	150	5,6	Rompiente
2S	-198 / -20	990,8 / 1168,8	178	6,4	Rompiente
2N	-148 / -20	1040,8 / 1168,8	128	5,5	Hs no rompiente
3S	-20 / 0	1168,8 / 1188,8	20	6,4	Rompiente
3N	-20 / 0	1168,8 / 1188,8	20	5,5	Hs no rompiente

Prolongación

Sector de la Escollera	Progresivas respecto del morro actual	Progresivas respecto inicio escollera	Longitud del Sector	Altura de ola de diseño	Condición de diseño
-	m	m	m	m	-
4S	18* / 338	1206,8 / 1526,8	320	6,4	Rompiente
4N	18* / 338	1206,8 / 1526,8	320	5,8	Hs no rompiente
5S	338 / 388	1526,8 / 1576,8	50	7,2	Rompiente
5N	338 / 388	1526,8 / 1576,8	50	7,2	Rompiente
Morro	388 - 400	1576,8 /1588,8	12	7,2	Rompiente

(*) Las progresivas indicadas se refieren a la intersección de los ejes de los tramos Remodelación y Prolongación.

Fuente: Proyecto Ejecutivo.

Donde las alturas de ola de diseño adoptadas resultaban entre 5,50m y 7,20m según su ubicación en la estructura y la cara correspondiente.

2.2 RESULTADOS DE LOS MODELOS FISICOS:

Los modelos físicos en 2D y 3D se realizaron en los laboratorios del INHA en la localidad de Cerdañola, Cataluña, España.

2.2.1 MODELOS 2D:

En 2D se modelaron las siguientes condiciones de oleajes para distintas alturas de marea:

5 secciones tipo, correspondientes a:

- Remodelación: perfil 117 lado mar (Core-Loc® de 3.9m³), coronado a la +8.80m y con altura de ola de diseño de 6.40m.
- Remodelación: perfil 117 lado canal (Core-Loc® de 2.4m³), coronado a la +5.50m y con altura de ola de diseño de 5.50m.
- Prolongación: progresiva 80 (Core-Loc® de 6.2m³), coronada a la +10.50m y con altura de ola de diseño de 6.40m.
- Prolongación: progresiva 280 (Core-Loc® de 6.2m³), coronada a la +10.50m y con altura de ola de diseño de 6.40m.

 Prolongación: progresiva 360 (Core-Loc® de 8.5m³) con y sin formación de un banco sedimentológico enfrente de la escollera, coronada a la +11.00m y con altura de ola de diseño de 7.20m.

Cada sección se ensayó para distintas alturas de ola de diseño crecientes, dos períodos (12s y 15s) y dos alturas de marea (+0,00m y +3,2m) a fin de observar su comportamiento frente a solicitaciones crecientes.

Se adjuntan, como ejemplo, los parámetros de ensayo de tres secciones, la inicial en la zona de Remodelación, una intermedia en la zona de Prolongación y una en la zona extrema.

Condiciones ensayadas para perfil 117 lado mar – Remodelación:

H _s (m)	T _p (s)	Nivel (m)
3.2	12	+0.0
4.5	12	+0.0
6.4	12	+0.0
7.5	12	+0.0
3.2	15	+0.0
4.5	15	+0.0
6.4	15	+0.0
7.5	15	+0.0
3.2	12	+3.2
4.5	12	+3.2
6.4	12	+3.2
7.5	12	+3.2
3.2	15	+3.2
4.5	15	+3.2
6.4	15	+3.2
7.5	15	+3.2

Condiciones ensayadas para perfil progresiva 280 - Prolongación:

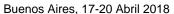
H _s (m)	T _p (s)	Nivel (m)
3.2	12	+0.0
4.5	12	+0.0
6.4	12	+0.0
7.5	12	+0.0
3.2	15	+0.0
4.5	15	+0.0
6.4	15	+0.0
7.5	15	+0.0
3.2	12	+3.2
4.5	12	+3.2
6.4	12	+3.2
7.5	12	+3.2
3.2	15	+3.2
4.5	15	+3.2
6.4	15	+3.2
7.5	15	+3.2

Condiciones ensayadas para perfil progresiva 360 - Prolongación:

H _s (m)	T _p (s)	Nivel (m)
4.6	12	+0.0
6.0	12	+0.0
7.2	12	+0.0
8.0	12	+0.0
4.6	15	+0.0
6.0	15	+0.0
7.2	15	+0.0
8.0	15	+0.0
4.6	12	+3.2
6.0	12	+3.2
7.2	12	+3.2
8.0	12	+3.2
4.6	15	+3.2
6.0	15	+3.2
7.2	15	+3.2
8.0	15	+3.2

Fuente: Proyeco Ejecutivo

Como resumen de las averías detectadas en el modelo se puede indicar que:


- Para la sección 117 lado mar no se detectaron averías en ninguna capa para ninguna condición de ensayo.
- Para la sección 117 lado canal se detectaron averías en la capa de Coreloc de 2,4m³ para la condición H_s = 6,99m, T_p = 15s y Nivel del mar = +3,2m
- La progresiva 80 no muestra da
 ños en la coraza exterior ni en el pie para cualquier condici
 ón ensayada. Presenta da
 ños menores en el antepie
- La progresiva 280 no muestra daños en ninguna de sus capas para cualquier condición ensayada (habiendo incluso alcansado la condición de ensayo H_s = 8,22m, T_p = 15s y Nivel del mar = +3,2m)
- La progresiva 360 solo muestra daños en la capa de Coreloc de 8,5m³ al alcansar la condición de ensayo H_s = 8,78m, T_p = 15s y Nivel del mar = +3,2m

Las conclusiones del ensayo fueron que, aun en los casos donde se detectaban fallas, estas se producían para niveles superiores a las olas de diseño, teniendo márgenes de seguridad adecuados por sobre estas condiciones. Sólo recomendaban aumentar el peso de los elementos de 1,8t.

2.2.2 *MODELOS 3D:*

En 3D se modelaron las siguientes condiciones de oleajes para distintas alturas de marea:

- 2 direcciones de incidencia oblicua del oleaje, correspondientes al SE y S.
- Cuatro escalones de altura de ola de energía creciente (siendo la altura de ola de diseño de 7.20m), para dos periodos de pico (12s y 15s) y dos niveles de mar (+0.00m y +3.20m).

Programación de ensayos en ambas direcciones:

H _s (m)	T _p (s)	Nivel (m)
4.5	12	+0.0
5.5	12	+0.0
6.5	12	+0.0
7.2	12	+0.0
4.5	15	+0.0
5.5	15	+0.0
6.5	15	+0.0
7.2	15	+0.0
4.5	12	+3.2
5.5	12	+3.2
6.5	12	+3.2
7.2	12	+3.2
4.5	15	+3.2
5.5	15	+3.2
6.5	15	+3.2
7.2	15	+3.2

Fuente: Proyecto Ejecutivo

Los siguientes cuadros resumen los ensayos realizados y los daños registrados en cada capa de elementos, según cada dirección de incidencia de oleaje ensayada:

Dirección Sur:

H _s	Tp	Nivel	Core-Loc®
(m)	(s)	(m)	2.4 m ³
4.31	12	+0.0	0.00
5.38	12	+0.0	0.00
6.18	12	+0.0	0.00
6.43	12	+0.0	0.00
3.07	15	+0.0	0.00
4.40	15	+0.0	0.00
5.73	15	+0.0	0.00
6.30	15	+0.0	0.00
5.10	12	+3.2	0.00
6.47	12	+3.2	0.00
7.81	12	+3.2	0.00
8.07	12	+3.2	0.00
3.56	15	+3.2	0.00
5.15	15	+3.2	0.00
6.15	15	+3.2	0.00
7.34	15	+3.2	0.00

Hs	T _p	Nivel	Core-Loc®
(m)	(s)	(m)	3.9 m ³
4.31	12	+0.0	0.00
5.38	12	+0.0	0.00
6.18	12	+0.0	0.00
6.43	12	+0.0	0.00
3.07	15	+0.0	0.00
4.40	15	+0.0	0.00
5.73	15	+0.0	0.00
6.30	15	+0.0	0.00
5.10	12	+3.2	0.00
6.47	12	+3.2	0.00
7.81	12	+3.2	0.00
8.07	12	+3.2	0.00
3.56	15	+3.2	0.00
5.15	15	+3.2	0.00
6.15	15	+3.2	0.00
7.34	15	+3.2	0.00

Hs	Tp	Nivel	Core-Loc®
(m)	(s)	(m)	6.2 m ³
4.31	12	+0.0	0.00
5.38	12	+0.0	0.00
6.18	12	+0.0	0.00
6.43	12	+0.0	0.00
3.07	15	+0.0	0.00
4.40	15	+0.0	0.00
5.73	15	+0.0	0.00
6.30	15	+0.0	0.00
5.10	12	+3.2	0.00
6.47	12	+3.2	0.00
7.81	12	+3.2	0.00
8.07	12	+3.2	0.00
3.56	15	+3.2	0.00
5.15	15	+3.2	0.00
6.15	15	+3.2	0.00
7.34	15	+3.2	0.00

Hs	Tp	Nivel	Core-Loc®
(m)	(s)	(m)	8.5 m ³
4.31	12	+0.0	0.00
5.38	12	+0.0	0.00
6.18	12	+0.0	0.00
6.43	12	+0.0	0.00
3.07	15	+0.0	0.00
4.40	15	+0.0	0.00
5.73	15	+0.0	0.00
6.30	15	+0.0	0.00
5.10	12	+3.2	0.00
6.47	12	+3.2	0.00
7.81	12	+3.2	0.00
8.07	12	+3.2	0.00
3.56	15	+3.2	0.00
5.15	15	+3.2	0.00
6.15	15	+3.2	0.00
7.34	15	+3.2	0.00

H _s (m)	T _p (s)	Nivel (m)	Core-Loc® 11 m ³
		(111)	11 111
4.31	12	+0.0	0.00
5.38	12	+0.0	0.00
6.18	12	+0.0	0.00
6.43	12	+0.0	0.00
3.07	15	+0.0	0.00
4.40	15	+0.0	0.00
5.73	15	+0.0	0.00
6.30	15	+0.0	0.00
5.10	12	+3.2	0.00
6.47	12	+3.2	0.00
7.81	12	+3.2	0.00
8.07	12	+3.2	0.00
3.56	15	+3.2	0.00
5.15	15	+3.2	0.00
6.15	15	+3.2	0.00
7.34	15	+3.2	0.00

X CONGRESO ARGENTINO DE INGENIERIA PORTUARIA Buenos Aires, 17-20 Abril 2018

Hs	Tp	Nivel	Pie
(m)	(s)	(m)	7.0T
4.31	12	+0.0	0.00
5.38	12	+0.0	0.00
6.18	12	+0.0	0.00
6.43	12	+0.0	0.00
3.07	15	+0.0	0.00
4.40	15	+0.0	0.00
5.73	15	+0.0	0.00
6.30	15	+0.0	0.00
5.10	12	+3.2	0.00
6.47	12	+3.2	0.00
7.81	12	+3.2	0.00
8.07	12	+3.2	0.00
3.56	15	+3.2	0.00
5.15	15	+3.2	0.00
6.15	15	+3.2	0.00
7.34	15	+3.2	0.00

H _s	T _p	Nivel	Core-Loc®
(m)	(s)	(m)	3.9 m ³
	` '	`	
4.69	12	+0.0	0.00
6.13	12	+0.0	0.00
7.36	12	+0.0	0.00
7.62	12	+0.0	0.00
3.42	15	+0.0	0.00
4.97	15	+0.0	0.00
6.11	15	+0.0	0.00
6.41	15	+0.0	0.00
4.32	12	+3.2	0.00
5.32	12	+3.2	0.00
6.14	12	+3.2	0.00
6.23	12	+3.2	0.00
3.68	15	+3.2	0.00
5.38	15	+3.2	0.00
6.56	15	+3.2	0.00
7.22	15	+3.2	0.00

Hs	Tp	Nivel	Apoyo
(m)	(s)	(m)	1.8T
4.31	12	+0.0	Averías
5.38	12	+0.0	Averías
6.18	12	+0.0	Averías
6.43	12	+0.0	Averías
3.07	15	+0.0	Averías
4.40	15	+0.0	Averías
5.73	15	+0.0	Averías
6.30	15	+0.0	Averías
5.10	12	+3.2	Averías
6.47	12	+3.2	Averías
7.81	12	+3.2	Averías
8.07	12	+3.2	Averías
3.56	15	+3.2	Averías
5.15	15	+3.2	Averías
6.15	15	+3.2	Averías
7.34	15	+3.2	Averías

Hs	Tp	Nivel	Core-Loc®
(m)	(s)	(m) 6.2 m ³	
4.69	12	+0.0	0.00
6.13	12	+0.0	0.00
7.36	12	+0.0	0.00
7.62	12	+0.0	0.00
3.42	15	+0.0	0.00
4.97	15	+0.0	0.00
6.11	15	+0.0	0.00
6.41	15	+0.0	0.00
4.32	12	+3.2	0.00
5.32	12	+3.2	0.00
6.14	12	+3.2	0.00
6.23	12	+3.2	0.00
3.68	15	+3.2	0.00
5.38	15	+3.2	0.00
6.56	15	+3.2	0.00
7.22	15	+3.2	0.00

Fuente: Proyeco Ejecutivo

Dirección Sudeste:

H_{s}	T _p	Nivel	Core-Loc®
(m)	(s)	(m)	2.4 m ³
4.69	12	+0.0	0.00
6.13	12	+0.0	0.00
7.36	12	+0.0	0.00
7.62	12	+0.0	0.00
3.42	15	+0.0	0.00
4.97	15	+0.0	0.00
6.11	15	+0.0	0.00
6.41	15	+0.0	0.00
4.32	12	+3.2	0.00
5.32	12	+3.2	0.00
6.14	12	+3.2	0.00
6.23	12	+3.2	0.00
3.68	15	+3.2	0.00
5.38	15	+3.2	0.00
6.56	15	+3.2	0.00
7.22	15	+3.2	0.00

H _s (m)	T _p (s)	Nivel (m)	Core-Loc® 8.5 m³
4.69	12	+0.0	0.00
6.13	12	+0.0	0.00
7.36	12	+0.0	0.00
7.62	12	+0.0	0.00
3.42	15	+0.0	0.00
4.97	15	+0.0	0.00
6.11	15	+0.0	0.00
6.41	15	+0.0	0.00
4.32	12	+3.2	0.00
5.32	12	+3.2	0.00
6.14	12	+3.2	0.00
6.23	12	+3.2	0.00
3.68	15	+3.2	0.00
5.38	15	+3.2	0.00
6.56	15	+3.2	0.00
7.22	15	+3.2	0.00

Buenos Aires, 17-20 Abril 2018

	_		
H _s	T _p	Nivel	Core-Loc®
(m)	(s)	(m)	11 m ³
4.69	12	+0.0	0.00
6.13	12	+0.0	0.00
7.36	12	+0.0	0.00
7.62	12	+0.0	0.00
3.42	15	+0.0	0.00
4.97	15	+0.0	0.00
6.11	15	+0.0	0.00
6.41	15	+0.0	0.00
4.32	12	+3.2	0.00
5.32	12	+3.2	0.00
6.14	12	+3.2	0.00
6.23	12	+3.2	0.00
3.68	15	+3.2	0.00
5.38	15	+3.2	0.00
6.56	15	+3.2	0.00
7.22	15	+3.2	0.00

Hs	T _p	Nivel	Pie
(m)	(s)	(m)	7.0T
4.69	12	+0.0	0.00
6.13	12	+0.0	0.00
7.36	12	+0.0	0.00
7.62	12	+0.0	0.00
3.42	15	+0.0	0.00
4.97	15	+0.0	0.00
6.11	15	+0.0	0.00
6.41	15	+0.0	0.00
4.32	12	+3.2	0.00
5.32	12	+3.2	0.00
6.14	12	+3.2	0.00
6.23	12	+3.2	0.00
3.68	15	+3.2	0.00
5.38	15	+3.2	0.00
6.56	15	+3.2	0.00
7.22	15	+3.2	0.00

Hs	Tp	Nivel	Apoyo
(m)	(s)	(m)	1.8Ť
4.69	12	+0.0	Averías
6.13	12	+0.0	Averías
7.36	12	+0.0	Averías
7.62	12	+0.0	Averías
3.42	15	+0.0	Averías
4.97	15	+0.0	Averías
6.11	15	+0.0	Averías
6.41	15	+0.0	Averías
4.32	12	+3.2	Averías
5.32	12	+3.2	Averías
6.14	12	+3.2	Averías
6.23	12	+3.2	Averías
3.68	15	+3.2	Averías
5.38	15	+3.2	Averías
6.56	15	+3.2	Averías
7.22	15	+3.2	Averías

Fuente: Proyeco Ejecutivo

Como conclusión de los ensayos 3D, se indicaba que, para las dos direcciones de incidencia de ola ensayada, los elementos de Core-Loc utilizados (11m³, 8,5m³, 6,2m³, 3,9m³ y 2,4m³) resultaron completamente estables aun con la incidencia de oleajes superiores a los de diseño.

Los elementos naturales de 7t proyectados para el pie mostraban el mismo comportamiento sin daños.

Sólo se registraban daños para los elementos de antepie de 1,8t, específicamente en el tramo

comprendido entre las secciones +40 y +140 de la Prolongación.

Estos resultados eran coincidentes con los obtenidos en los ensayos 2D.

La observación de daños en las capas de elementos de 1,8t derivó en la recomendación de aumentar el peso de los mismos.

2.3 TEMPORALES REALES:

A fin de conocer los temporales que soportó la estructura desde el final de su construcción (fines del año 2006), se procesaron datos de alturas de olas disponibles desde esa fecha:

Los datos con que se contó fueron:

- Datos del olígrafo instalado con la obra desde marzo 2007 hasta julio 2010
- Datos predicción de oleaje desde marzo 2014 hasta marzo 2016

Cabe señalar que en el período julio 2010 hasta el año 2017 no hubo registros del olígrafo por haberse roto el original de la obra y haber sido reemplazado por uno nuevo en el año 2017.

En el lapso transcurrido sin olígrafo, el Consorcio de Gestión del Puerto de Quequén contrató un servicio de predicción de olas cuya información con 5 días de pronóstico era publicada en la página web del Consorcio.

Para la confección del presente trabajo sólo se ha podido contar con los lapsos indicados anteriormente.

De los datos procesados se determinó que, en dichos períodos, la obra ha soportado los siguientes temporales con $H_{\text{s}} > 4\text{m}$:

Temporales con Hs>4m para los períodos analizados

	Hs (m)	Hmax (m)	Tp (s)	Dirección
23/06/2007	3,92	6,16	9,6	197
24/06/2007	4,06	6,36	10,9	191
26/07/2007	4,59	7,21	9,7	196
27/07/2007	4,99	7,78	12,6	184
23/11/2007	4,04	6,36	9,7	196
11/06/2008	4,02	6,3	10,2	189
12/06/2008	3,93	6,17	10,2	190
14/06/2008	3,93	6,2	9,1	195
14/09/2008	4,11	6,29	14,7	155
15/11/2008	4,61	7,22	12	172
16/11/2008	4,13	6,41	12,7	164
31/01/2009	3,98	6,27	9,73	184
01/02/2009	3,95	6,21	10,18	181
24/02/2010	4,19	6,51	8,3	170
14/03/2010	4,09	6,4	10,63	175
15/03/2010	4,46	6,94	10,8	175
12/07/2010	4,15	6,4	12,35	168
25/00/2014	E 40	10.0F	10.67	100
25/08/2014	5,43	10,85	10,67	160
26/08/2014 04/11/2014	4,89 4,1	9,66 8,31	11 9	167 193
04/11/2014	4, 1	0,31	9	193
03/05/2015	4,15	8,23	12	197
23/08/2015	4,01	8,13	9	188
16/10/2015	4,42	8,81	11	188
. 5, . 5, 2310	.,	5,01		.00
2016 HASTA N	IARZO N	O SE REGISTE	RAN TEN	//PORALES

Fuente: Elaboración propia con datos CGPQ.

Para el análisis de los datos y su sistematización se tomaron valores promedio de H_s , H_{max} , T_p y Dirección durante el temporal. La duración del mismo se estimó como el período durante el cual las olas significativas superaban los 4m o estaban muy cerca de ese límite y el clima se mantenía.

2.4 MEDICIONES FISICAS DE EVOLUCION ESTRUCTURA:

Durante un período de 28 meses (entre Mayo de 2007 y Septiembre de 2009) se desarrolló un programa de medición de puntos fijos ubicados en el cuerpo de la escollera.

La metodología consistió en la colocación de 25 soportes roscados fijados a sendos bloques de Core-Loc a lo largo del coronamiento de la escollera.

En la ejecución de la primera campaña se posicionó un punto base señalizado en el techo de la caseta del olígrafo, luego se recorrió el coronamiento de la escollera colocando el prisma de medición en cada uno de los soportes y midiendo sus coordenadas.

La referencia altimétrica fue el punto base y la orientación fue el azimut 0 en dirección de la chimenea de la Central termoeléctrica.

En las campañas sucesivas se utilizó el mismo sistema de coordenadas.

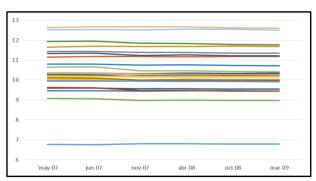
El equipamiento utilizado fue una estación total Pentax PC215 y equipos de comunicación.

De la comparación de los relevamientos se observa que los movimientos de los bloques fueron insignificantes, no registrándose desplazamientos superiores a 24 cm.

Esto resultados indican que la escollera hasta marzo 2009 (última campaña) no había sufrido deformaciones significativas.

Medición original de referencia (Mayo 2007):

Releva	Relevamiento de puntos fijos de la Escollera Sur de Puerto Quequén						
Punto	Norte	Este	Cota	Prog aprox	Observ.		
PF0	1256,415	994,096	6,773		Paralelepip.		
PF1	962,424	991,862	9,981	7,40	Bloque Core Loc C2969		
PF2	946,818	998,866	10,008	21,40	Bloque Core Loc C513		
PF3	933,683	987,691	10,028	36,40	Bloque Core Loc C1245		
PF4	908,169	989,520	9,468	61,10	Bloque Core Loc C692		
PF5	886,463	976,940	9,075	84,80	Bloque Core Loc C2692		
PF6	865,978	982,568	9,589	103,85	Bloque Core Loc C2679		
PF7	842,138	969,804	9,636	129,70	Bloque Core Loc C2923		
PF8	830,415	973,087	10,183	140,60	Bloque Core Loc C2314		
PF9	819,251	967,230	10,108	152,65	Bloque Core Loc C3346		
PF10	781,762	966,318	10,327	189,60	Bloque Core Loc C1400		
PF11	774,971	957,824	10,263	197,90	Bloque Core Loc C3087		
PF12	758,509	960,239	10,186	213,60	Bloque Core Loc C2616		
PF13	744,620	953,358	10,368	228,55	Bloque Core Loc C3037		
PF14	733,429	954,420	10,339	239,35	Bloque Core Loc C2791		
PF15	715,378	949,944	10,176	257,90	Bloque Core Loc C2624		
PF16	700,997	952,531	9,944	271,55	Bloque Core Loc C3254		
PF17	683,022	948,408	10,652	290,00	Bloque Core Loc C3327		
PF18	681,425	941,050	10,793	292,90	Bloque Core Loc C3316		
PF19	665,178	943,442	11,157	308,45	Bloque Core Loc D454		
PF20	642,765	931,990	11,436	332,60	Bloque Core Loc D4		
PF21	626,962	935,883	11,662	347,40	Bloque Core Loc D615		
PF22	616,890	924,711	11,342	359,40	Bloque Core Loc D223		
PF23	594,598	921,913	11,937	381,80	Bloque Core Loc E333		
PF24	599,833	935,799	12,531	374,05	Bloque Core Loc E625		
PF25	592,570	928,271	12,643	382,60	Base Baliza		


Registros de mediciones de control:

	Cotas					
Punto	Junio 2007	Noviembre 2007	Abril 2008	Octubre 2008	Marzo 2009	Setiembre 2009
PF0	6,711	6,816	6,806	6,795	6,785	6,817
PF1	9,940	9,981	9,982	9,976	9,971	9,999
PF2	9,969	10,011	10,046	10,032	10,034	10,052
PF3	9,992	9,987	9,995	9,984	9,981	9,936
PF4	9,428	9,461	9,459	9,462	9,449	9,477
PF5	9,026	8,993	8,997	8,980	8,972	8,945
PF6	9,550	9,567	9,569	9,551	9,551	9,572
PF7	9,576	9,484	9,486	9,454	9,451	9,448
PF8	10,145	10,193	10,190	10,178	10,173	10,211
PF9	10,063	10,006	9,992	9,981	9,980	9,830
PF10	10,305	10,332	10,346	10,338	10,350	10,366
PF11	10,217	10,222	10,237	10,209	10,211	10,180
PF12	10,150	10,183	10,179	10,181	10,178	10,212
PF13	10,317	10,307	10,304	10,281	10,285	10,267
PF14	10,304	10,198	10,197	10,190	10,196	10,150
PF15	10,146	10,159	10,157	10,152	10,143	10,146
PF16	9,906	9,950	9,937	9,927	9,910	9,916
PF17	10,629	10,482	10,465	10,435	10,409	10,392
PF18	10,764	10,756	10,771	10,732	10,712	10,648
PF19	11,140	11,199	11,177	11,182	11,185	11,173
PF20	11,400	11,392	11,384	11,350	11,347	11,336
PF21	11,661	11,696	11,683	11,703	11,688	11,653
PF22	11,310	11,239	11,267	11,225	11,219	11,187
PF23	11,913	11,861	11,846	11,781	11,768	11,700
PF24	12,500	12,534	12,560	12,564	12,509	12,542
PF25	12,625	12,681	12,674	12,623	12,614	12,624

Fuente: Datos propios.

En el siguiente gráfico se aprecia que ninguno de los puntos había sufrido variaciones importantes respecto de sus cotas originales entre la medición inicial y cada campaña posterior.

En el gráfico se registran en ordenadas cada campaña de medición y en ordenadas las cotas (m). Para cada punto de referencia y en cada campaña hay un valor de registro y los mismos están vinculados por una línea de un color identificatorio.

Fuente: Elaboración propia.

2.5 OPERATIVIDAD Y MEDICIONES DE OLAS:

Las restricciones al ingreso y egreso de buques en el puerto están reguladas por la Prefectura Naval Argentina. Estas restricciones tienen por objetivo maximizar la seguridad náutica y dependen, principalmente, de la altura de ola y velocidad del viento.

El objetivo principal de la obra de Remodelación y Prolongación de la Escollera de Quequén fue aumentar la operatividad del puerto ampliando la ventana de tiempo operable.

Antes de realizarse la obra las limitaciones operativas del Puerto de Quequén eran las indicadas en la Ordenanza Marítima 1/74, que en su Agregado N°4 indicaba que:

"Entradas y salidas diurnas:

... Para las maniobras de buques de más de 190 metros de eslora la altura de olas no deberá ser superior a un (1) metro."

Esta restricción era una condición que limitaba mucho la operatividad del puerto. Del análisis de los datos de olas históricos se puede determinar que anualmente existían entre 130 y 180 días inoperativos por superar el oleaje esta condición.

En el año 2006, cuando las obras estaban por terminarse y atendiendo a los efectos que ya se podían observar por su acción, se dictó la Disposición QUEQ, RB6 N°246/06, donde en su Anexo II se indica que:

"LIMITACIONES OPERATIVAS:

- ... BUQUES DE ESLORA SUPERIOR A 80 METROS.
- ... No se permitirá el ingreso/salida del Puerto cuando la altura de ola sea superior a 1,85m...
- ... Se permitirá el ingreso/salida de buques con altura de ola hasta 2,10m cuando su eslora sea de hasta 190m y su calado no sea superior a 27 pies."

Esta primera modificación representaba un incremento sustancial en la operatividad del puerto. Aplicando esta nueva condición a las estadísticas de olas de los años iniciales de funcionamiento de la obra completa (2007, 2008 y 2009) se puede determinar que los días operativos pasan de 211 días a 339 días.

Luego, en el año 2007 se dictan las Disposiciones QUEQ, RB6 N° 09/07, QUEQ,RB6 N° 124/07 y, finalmente, en noviembre de 2007, se dicta la Disposición QUEQ,RB6 N°199/07. La misma supera y reemplaza a las anteriores y dispone:

- "... LIMITACIONES OPERATIVAS.
- ... BUQUES CON ESLORA SUPERIOR A OCHENTA METROS (80m)...
- ... Se permitirá el ingreso y egreso de buques con una altura de ola de hasta UN METRO CON OCHENTA CENTIMETROS (1,80m) con el margen de seguridad ...
- ... Se permitirá el ingreso y egreso de buques con una altura de ola de hasta DOS METROS CON DIEZ CENTÍMETROS (2,10m) con un margen de seguridad adicional en función del calado máximo...
- ... Se permitirá el ingreso y egreso de buques con una altura de ola de hasta DOS METROS CON CUARENTA CENTIMETROS (2,40m) con un margen de seguridad adicional en función del calado máximo...

Buenos Aires, 17-20 Abril 2018

... Se permitirá con luz diurna el ingreso y egreso de buques de hasta CIENTO CUARENTA METROS (140m) de eslora, con una altura de ola de hasta DOS METROS CON SETENTA CENTIMETROS (2,70m) con un margen de seguridad adicional en función del calado máximo...

... Las operaciones indicadas en ... estarán supeditadas a que el período del oleaje no supere los OCHO (8) segundos..."

Estos cambios en las limitaciones abrieron una ventana operativa mucho más amplia.

En noviembre de 2009 se dicta la Disposición QUEQ,RB6 N°159/09, en la cual se ratifican los criterios de la disposición anterior en estos aspectos.

Para clarificar la incidencia de cada limitación de altura de olas en función de los días operativos se elaboró el siguiente cuadro:

DIAS OPERATIVOS
Según distintas limitaciones por altura de olas según
Disposiciones PNA

	2100001010011001					
	Hs < 1m	Hs < 1,80m	Hs < 1,85m	Hs < 2,1m	Hs < 2,4m	Hs < 2,7m
2007	194	308	312	333	348	355
2008	209	311	316	335	347	355
2009	229	333	336	348	354	359

Fuente: Elaboración propia con datos CGPQ.

El cuadro anterior se elaboró analizando las mediciones de altura de ola registradas por el olígrafo para cada año indicado. En dichos períodos se contaba con registros de todo el año.

Corresponde señalar que:

- Al ser los datos de mediciones del olígrafo tan frecuentes pueden estar indicando situaciones de límite entre operativo/no operativo de cambio continuo entre uno y otro en condiciones de borde. Esto resulta incompatible con la situación real donde el Puerto se abre o se cierra por períodos más prolongados.
- Como existen otras limitaciones a la operatividad (viento y período de olas) los días operativos resultarían iguales o inferiores a los indicados.
- Según estadísticas más extensas y que eran datos base del Anteproyecto, los días en que la altura de ola significativa era menor o igual a 1m (H_{s <} 1m) tenían una ocurrencia del 46,65%, equivalente a 170 días/año.

2.6 OPERATIVIDAD PUERTO 2014-2016:

El Consorcio de Gestión del Puerto de Quequén elabora sus propias estadísticas y las publica en su página web.

De las mismas surgen los datos de días operativos por año y en la página web están

disponibles los cuadros para los años 2104 – 2015 – 2016 – 2017.

Se adjuntan las imágenes de los cuadros correspondientes.

Estado del Puerto

Desde 01/01/2014 Hasta 31/12/2014

<u>Totales</u>				
<u>Estado</u>	Dias	Horas	Minutos	
Operable	267	10	21	
Restringido	45	20	32	
Cerrado x Viento	32	12	26	
Restr. PNA Res. 51/14	11	13	15	
Cerrado x Niebla	7	15	25	

Estado del Puerto

Desde 01/01/2015 Hasta 31/12/2015

<u>Totales</u>			
<u>Estado</u>	<u>Dias</u>	Horas	Minutos
Operable	295	4	48
Restringido	47	8	20
Cerrado x Viento	18	8	25
Cerrado x Niebla	4	2	26

Estado del Puerto

Desde 01/01/2016 Hasta 31/12/2016

<u>Totales</u>				
<u>Estado</u>	<u>Dias</u>	Horas	Minutos	
Operable	295	22	32	
Restringido	52	18	30	
Cerrado x Viento	16	0	22	
Cerrado x Niebla	1	6	35	

Estado del Puerto

Desde 01/01/2017 Hasta 31/12/2017

	Totales		
<u>Estado</u>	<u>Dias</u>	Horas	Minutos
Operable	286	21	39
Restringido	59	2	10
Cerrado x Viento	14	14	40
Cerrado x Niebla	3	8	50
Restringido/Correntada	1	0	40

Fuente: Página web CGPQ

Procesando esta información y entendiendo que los días de "Estado Restringido" son operativos bajo

X CONGRESO ARGENTINO DE INGENIERIA PORTUARIA

Buenos Aires, 17-20 Abril 2018

ciertas condiciones, se puede resumir la información de los mismos en el siguiente cuadro:

	ESTADO OPERATIVO (días)			
	SIN	CON		
	RESTRICCIONES	RESTRICCIONES	TOTAL	
2014	267	46	313	
2015	295	47	342	
2016	295	52	347	
2017	286	59	345	

Fuente: Elaboración propia con datos CGPQ.

3 RESULTADOS:

3.1 DETERIOROS PRODUCIDOS POR LOS TEMPORALES

En los períodos analizados el temporal más crítico acaecido fue el 25 de Agosto de 2014, con una altura de ola significativa, en promedio, $H_s = 5,43$ m. Los otros parámetros, en promedio, fueron:

 $H_{max} = 10,85 \text{ m}$ $T_p = 10,67 \text{ s}$

Estos valores son inferiores a la altura de ola de diseño y las condiciones de temporal asociadas:

 $H_s = 7.2 \text{ m}$ $T_p = 12 \text{ a } 15 \text{ s}$

Las mediciones realizadas en la escollera en el período 2007 – 2009 no evidencian daños o asentamientos significativos.

3.2 MEJORAS EN LA OPERATIVIDAD:

Como resultado de los efectos de la obra sobre la seguridad de la navegación y por ende la operatividad del puerto, la Prefectura Naval Argentina ha aumentado la altura de ola que determina las limitaciones operativas.

De esta forma se pasó de 1m de H_{s} previa a la ejecución de la obra a un máximo de 2,7m (con limitaciones) en la actualidad.

Este cambio, muy significativo, hizo que el puerto alcance actualmente índices de operatividad de 336 días en los últimos años.

Este valor prácticamente duplica la operatividad previa a las obras.

4 CONCLUSIONES

La hipótesis del aumento de operatividad del Puerto de Quequén, que constituyó el objetivo principal de la ejecución de la obra, resultó validado y la solución adoptada aportó un incremento de los días operativos muy importante llegando a duplicar la media existente antes de la ejecución de la obra. En los períodos relevados (mayo 2007 - marzo 2009) no se midieron variaciones significativas en las posiciones de los elementos estructurales. Los elementos de coraza soportaron bien los temporales acaecidos hasta marzo 2009.

Las hipótesis de diseño de los elementos de la escollera, tanto de la remodelación como de la prolongación, han resultado válidos hasta esa fecha.

Cabe destacar que en los períodos analizados la escollera no ha soportado ninguna tormenta equivalente a la de diseño.

 Se recomienda retomar un plan de seguimiento de la evolución estructural de la escollera de acuerdo al plan original a fin de contar con datos que permitan prever la necesidad de reparaciones y estudiar mejor su comportamiento frente a los temporales que se produzcan.

5 REFERENCIAS

- Proyecto Ejecutivo Remodelación y Prolongación de la Escollera Sur de Puerto Quequén – UTE DYCASA-DOPSA. (Abril 2004).
- Ordenanza Marítima 1/74 PNA
- Disposición QUEQ,RB6 N°246/06 PNA
- Disposición QUEQ,RB6 N°09/07 PNA
- Disposición QUEQ,RB6 N°124/07 PNA
- Disposición QUEQ,RB6 N°199/07 PNA
- Disposición QUEQ,RB6 N°159/09 PNA
- Datos propios del CGPQ
- Datos página web Consorcio de Gestión Puerto de Quequén – www.puertoquequen.com